tlyonlogo
会员中心

最近浏览的商品:

0去询价篮结算
询价篮中还没有商品,赶紧选购吧!
当前位置: 首页 > 生命科学/动物生理/微生物 > 仿生系统 > 体外模拟消化系统 > DGM胃肠动态模拟器,动态胃消化模拟系统
DGM胃肠动态模拟器,动态胃消化模拟系统
放大图片
DGM胃肠动态模拟器,动态胃消化模拟系统
精确复制胃混合液,剪切速率和蠕动,可控制的胃排空和排泄
  • 订货编号:tlyon005290
  • .
  • 人气指数:4892
  • 品牌名称:英国PBL
  • 样本资料: 【索取】
  • 供货周期: 合同约定 
  • 关联标签:DGM胃肠动态模拟器,动态胃消化模拟系统,动态体外消化模拟器,动态胃消化模拟器
数量:
  
浏览历史

产品介绍

参考资料

规格参数

用户评测

售后服务

  • 产品名称:DGM胃肠动态模拟器,动态胃消化模拟系统
  • 订货号:tlyon005290
  • 品牌名称:英国PBL
如果您发现产品信息不准确,欢迎纠错;或咨询相关类别、品牌产品,请联系我们

主要特征

  • 精确复制胃混合液,剪切速率和蠕动。
  • 为胃内容物提供准确的生化环境,允许进食和禁食比较不同食物类型的剂型行为。
  • 与均质样品相反,具有研究多相餐食(即,真实食品和/或口服给药的药物制剂)消化能力的能力。
  • 根据食物基质自动动态调整胃停留时间,酸和酶的添加量(数量和速率)以及生理过程。
  • 可控制的胃排空和排泄。
  • 在消化的所有阶段均可进行采样,从而可以进行实时收集和详细分析,以及针对特定隔室的建模。
  • 全自动,易于使用和消毒。
  • 提供有关消化过程的质量检查报告,包括停留时间,排空曲线,pH梯度,胃添加量/流速。

描述

胃肠动态模拟器,动态胃消化模型(DGM)是计算机控制的体外模拟肠道消化系统,可以模拟人胃中的消化,从而可以实时准确地预测和了解消化过程中人肠内食物或药物制剂的行为。DGM是第一个已知的体外消化模型,在单个预测系统中结合了人类胃中的内腔物质所经历的物理,机械和生化环境的新兴科学知识。

DGM完全复制了复杂的生化条件和一系列胃动力,这些因素对于预测API(活性药物成分)和口服给药剂型(例如胶囊,片剂,粉剂和液体)的生物行为至关重要。在此过程中的任何时候都可以取样,并进行分析以预测诸如营养素和药物等活性成分的摄取有效性(生物可及性)。

DGM基于多年的人类MRI研究基础,并已在商业和学术领域得到食品和制药应用的验证,为动物研究提供了一种生理,经济高效和符合道德的选择。

 

参考文献:

Salt LJ, Mandalari G, Parker ML, Hussein M, Mills CE, Gray R, Berry SE, Hall W, Wilde PJ. Mechanisms of interesterified fat digestibility in a muffin matrix using a dynamic gastric model. Food Funct. 2023 Nov 13;14(22):10232-10239. doi: 10.1039/d3fo02963h. PMID: 37916919.

 

Ingrid Swanson Pultz et al (2021).Gluten Degradation, Pharmacokinetics, Safety, and Tolerability of TAK-062, an Engineered Enzyme to Treat Celiac Disease.Gastroenterology 2021;161:81–93.DOI:https://doi.org/10.1053/j.gastro.2021.03.019


Edwards C H et al (2021).  Structure-function studies of chickpea and durum wheat uncover mechanisms by which cell wall properties influence starch bioaccessibility.  Nat Food; 2: 118-126. https://doi.org/10.1038/s43016-021-00230-y


Charlotte E Mills, Scott V Harding, Mariam Bapir, Giuseppina Mandalari, Louise J Salt, Robert Gray, Barbara A Fielding, Peter J Wilde, Wendy L Hall, Sarah E Berry, Palmitic acid–rich oils with and without interesterification lower postprandial lipemia and increase atherogenic lipoproteins compared with a MUFA-rich oil: A randomized controlled trial, The American Journal of Clinical Nutrition, Volume 113, Issue 5, May 2021, Pages 1221–1231, https://doi.org/10.1093/ajcn/nqaa413


Ballance S et al (2013).  Evaluation of gastric processing and duodenal digestion of starch in six cereal meals on the associated glycaemic response using an adult fasted dynamic gastric model.  Eur J Nutr; 52(2): 799-812.  https://doi.org/10.1007/s00394-012-0386-5

Burnett G R et al (2002).  Interaction between protein allergens and model gastric emulsions.  Biochem Soc Trans; 30(Pt 6): 916-918.  https://doi.org/10.1042/bst0300916

Chessa S et al (2014).  Application of the Dynamic Gastric Model to evaluate the effect of food on the drug release characteristics of a hydrophilic matrix formulation.  Int J Pharm; 466(1-2): 359-367.  https://doi.org/10.1016/j.ijpharm.2014.03.031

Mandalari G et al (2008).  Potential prebiotic properties of almond (Amygdalus communis L.) seeds.  Appl Environ Microbiol; 74(14): 4264-4270.  https://doi.org/10.1128/AEM.00739-08

Marciani L et al (2007).  Enhancement of intragastric acid stability of a fat emulsion meal delays gastric emptying and increases cholecystokinin release and gallbladder contraction.  Am J Physiol Gastrointest Liver Physiol; 292(6): G1607-1613.  https://doi.org/10.1152/ajpgi.00452.2006

Menard O et al (2014).  Validation of a new in vitro dynamic system to simulate infant digestion.  Food Chem; 145: 1039-1045.  https://doi.org/10.1016/j.foodchem.2013.09.036

Mercuri A et al (2011).  The effect of composition and gastric conditions on the self-emulsification process of ibuprofen-loaded self-emulsifying drug delivery systems: a microscopic and dynamic gastric model study.  Pharm Res; 28(7): 1540-1551.  https://doi.org/10.1007/s11095-011-0387-8

Pitino I et al (2010).  Survival of Lactobacillus rhamnosus strains in the upper gastrointestinal tract.  Food Microbiol; 27(8): 1121-1127.  https://doi.org/10.1016/j.fm.2010.07.019

Rodes L et al (2014).  Enrichment of Bifidobacterium longum subsp. infantis ATCC 15697 within the human gut microbiota using alginate-poly-l-lysine-alginate microencapsulation oral delivery system: an in vitro analysis using a computer-controlled dynamic human gastrointestinal model.  J Microencapsul; 31(3): 230-238.  https://doi.org/10.3109/02652048.2013.834990

Van den Abbeele P et al (2010).  Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX.  Appl Environ Microbiol; 76(15): 5237-5246.  https://doi.org/10.1128/AEM.00759-10

Van den Abbeele P et al (2012).  Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli.  Microb Biotechnol; 5(1): 106-115.  https://doi.org/10.1111/j.1751-7915.2011.00308.x

Vardakou M et al (2011).  Achieving antral grinding forces in biorelevant in vitro models: comparing the USP dissolution apparatus II and the dynamic gastric model with human in vivo data.  AAPS PharmSciTech; 12(2): 620-626.  https://doi.org/10.1208/s12249-011-9616-z

Vardakou M et al (2011).  Predicting the human in vivo performance of different oral capsule shell types using a novel in vitro dynamic gastric model.  Int J Pharm; 419(1-2): 192-199.  https://doi.org/10.1016/j.ijpharm.2011.07.046

Vermeiren J et al (2012).  Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment.  FEMS Microbiol Ecol; 79(3): 685-696.  https://doi.org/10.1111/j.1574-6941.2011.01252.x

Wickham M, Faulks R and Mills C (2009).  In vitro digestion methods for assessing the effect of food structure on allergen breakdown.  Mol Nutr Food Res; 53(8): 952-958.  https://doi.org/10.1002/mnfr.200800193

Wickham M J S et al (2012).  The Design, Operation, and Application of a Dynamic Gastric Model.  Dissolution Technologies; 19(3): 15-22.  https://doi.org/10.14227/DT190312P15

Zhang Q et al (2014).  Differential digestion of human milk proteins in a simulated stomach model.  J Proteome Res; 13(2): 1055-1064.  https://doi.org/10.1021/pr401051u

Butler J et al (2019).  In vitro models for the prediction of in vivo performance of oral dosage forms: Recent progress from partnership through the IMI OrBiTo collaboration.  Eur J Pharm Biopharm; 136: 70-83.  https://doi.org/10.1016/j.ejpb.2018.12.010


*本产品非医疗器械,不能用于临床诊断和治疗,仅科研用途!*  

用户评测(共0条评测)
  • 暂时没有用户评测
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
评测类型: 产品价格 样本资料 使用操作 售后维修 其他
评测内容:
验证码: captcha

服务承诺:

图拉扬公司向您保证所售商品均为正规厂家生产,图拉扬所售商品均可开具正规增值税专用发票(税率13%),与产品一起寄送。凭质保证书(保修卡)及税务发票,可享受壹年质保(特殊商品依实而定),终身维修.图拉扬公司提供具有竞争力的产品价格,请放心采购!

注:因厂家会在没有任何提前通知的情况下更改产品包装、产地或者一些附件,本司不能确保客户收到的货物与图拉扬官网图片、产地、附件说明完全一致。只能确保为原厂正货!下订单前请与图拉扬客服联系确认商品名称、型号、品牌、技术参数。若本公司未及时更新,敬请谅解!

权利声明:
图拉扬公司网页上的所有产品信息、客户评价、产品咨询、讨论等内容,是图拉扬公司重要的经营资源,未经许可,禁止非法转载使用。

典型用户(近期成交订单数量:0)
还未添加典型用户
用户咨询(共0条咨询)
  • 如下留言我们会及时回复,也可以通过在线客服或者400-028-9008联系我们。
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
咨询类型: 产品报价 样本资料 使用操作 售后维修 其他
咨询内容:
验证码: captcha
配送方式
货物托管
配送方式
配送周期
货物验收
采购指南
关于我们
采购流程
联系方式
付款方式
发票开具
现金付款
银行汇款
价格申明
售后服务
服务承诺
产品保修
安装培训
特色服务
供应商入驻
项目授权
价格隐私
OEM服务

图拉扬分站

成都站、北京站
广州站、上海站
香港站

查看详情 >