tlyonlogo
会员中心
您好,请登录, 注册

最近浏览的商品:

0去询价篮结算
询价篮中还没有商品,赶紧选购吧!
当前位置: 首页 > 技术文献 > 应用文献 > Cyranose 320电子鼻用于沉香油分类识别
文章分类
浏览历史
Cyranose 320电子鼻用于沉香油分类识别

来源: Wahyu Hidayat *, Ali Yeon Md. Shakaff, Mohd Noor Ahmad and Abdul Hamid Adom  发布日期: 2019-04-09  访问量: 61


本文介绍了电子鼻(Cyranose320)在沉香油分类中的应用。采用层次聚类分析(HCA)和主成分分析(PCA)对不同类型的油进行分类。HCA生成了一个树形图,显示电子鼻数据分成三组不同的油。PCA散点图显示三组之间存在明显的分离。利用人工神经网络对未知样本进行了更好的预测。...
标签: Cyranose320 电子鼻 沉香油 分类
 

Classification of Agarwood Oil Using an Electronic Nose

电子鼻用于沉香油分类识别

Wahyu Hidayat *, Ali Yeon Md. Shakaff, Mohd Noor Ahmad and Abdul Hamid Adom

Abstract: Presently, the quality assurance of agarwood oil is performed by sensory panels which has significant drawbacks in terms of objectivity and repeatability. In this paper, it is shown how an electronic nose (Cyranose 320) may be successfully utilised for the classification of agarwood oil. Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA), were used to classify different types of oil. The HCA produced a dendrogram showing the separation of e-nose data into three different groups of oils. The PCA scatter plot revealed a distinct separation between the three groups. An Artificial Neural Network (ANN) was used for a better prediction of unknown samples

目前,沉香油的质量保证是由感官板进行的,在客观性和重复性方面存在着明显的缺陷。本文介绍了电子鼻(Cyranose320)在沉香油分类中的应用。采用层次聚类分析(HCA)和主成分分析(PCA)对不同类型的油进行分类。HCA生成了一个树形图,显示电子鼻数据分成三组不同的油。PCA散点图显示三组之间存在明显的分离。利用人工神经网络对未知样本进行了更好的预测。

Cyranose 320 运用ANN算法


相关文章