tlyonlogo
会员中心
您好,请登录, 注册

最近浏览的商品:

0去询价篮结算
询价篮中还没有商品,赶紧选购吧!
当前位置: 首页 > 技术文献 > 应用文献 > 使用电子鼻和GC/MS气味识别提高废物工厂管理
文章分类
浏览历史
使用电子鼻和GC/MS气味识别提高废物工厂管理

来源: Pasquale Giungato et al  发布日期: 2019-08-08  访问量: 47


本文将动态嗅觉测量和气相色谱-质谱/嗅觉测量相结合,研究了不同技术的电子鼻对垃圾处理厂臭气排放的响应,以实现对环境的监测。建立和改进清洁生产技术。在垃圾处理厂检测到三种影响最大的恶臭源:沼气,一种城市固体废物机械处理的副产品,有机物含量低,污泥经过压缩和脱水处理城市污水。臭气影响最主要的来源是污泥,臭气影响的主要原因是芳烃(特别是1,3,5-三甲基苯)、脂肪族烃、萜烯和硫挥发物(甲基二硫化物、二硫化碳、二甲基三硫化物)...
标签: 电子鼻、GC/MS、气味识别、废物管理
 

Improving recognition of odors in a waste management plant by using electronic noses with different technologies, gas chromatographyemass spectrometry/olfactometry and dynamic olfactometry

使用电子鼻GC/MS气味识别提高废物工厂管理

Pasquale Giungato a, *, Gianluigi de Gennaro b, c, Pierluigi Barbieri d, Sara Briguglio d,
Martino Amodio e, Lucrezia de Gennaro e, Francesco Lasigna f
a Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona, 4, IT-70125 Bari, Italy
b Department of Biology, University of Bari “Aldo Moro”, Via Orabona, 4, IT-70125 Bari, Italy
c Apulia Regional Agency for Environmental Prevention and Protection (ARPA Puglia), Corso Trieste 27, IT-70126 Bari, Italy
d Department of Chemical and Pharmaceutical Science, University of Trieste, via Giorgieri 1, IT-34127 Trieste, Italy
e LEnviroS srl, spin off of University of Bari, via degli antichi pastifici 8/B, IT-70056 Molfetta, Bari, Italy
f Italcave SpA, via per Statte, 6000, IT-74123 Taranto, Italy

A b s t r a c t
Odor emissions from waste management plants have long been an environmental and economic issue, but only recently regional authorities in Italy are regulating this sector by imposing control and mitigation of the phenomenon. Electronic noses, initially developed as cheap, easy tools to detect volatiles, may have the required time-resolved coverage of the odor emission phenomenon in a cheap and feasible way with respect to chemical analysis of air. One crucial issue to resolve is to evaluate the discriminant capacity of a sensor array in-field and under working conditions. In this paper the authors have studied the responses of electronic noses of different technologies to odors emitted from a waste management plant, by integrating results obtained with dynamic olfactometry and gas chromatographyemass spectrometry/ olfactometry, in the aim to implement a monitoring system and improve cleaner production technologies. Three most impacting odor sources in the waste management plant were detected: biogas, a by-product of mechanical treatment of municipal solid wastes, with low organic fraction and a sludge pressed and dehydrated from treatment of urban wastewater. The most odor impacting source was the sludge and the major responsible of the odor impacts were aromatics (in particular 1,3,5-trimethyl benzene), aliphatic hydrocarbons, terpenes and sulphur volatiles (methyl disulphide, carbon disulphide, dimethyltrisulphide). Ten Metal Oxide Semiconductors and 32 polymer/black carbon (Nano Composite Array) sensors in two electronic noses, were tested for discrimination source capabilities.
Results of linear discriminant analysis and cross validation give 86.7% successful recognition for Metal Oxide Semiconductors, 53.3% for Nano Composite Array and 93.3% for a selection of sensors belonging to both technologies chosen according to the selectivity towards the odor active molecules. The containment
of odors could also be achieved by spraying a specific product and monitoring the process using selected sensors of the arrays. The results of the in-field work demonstrate strengths and weaknesses of different construction technologies in the e-noses arrays, to characterize and monitor in-site and in real time odor emissions from waste management plants.

废物管理厂的臭气排放长期以来一直是环境和经济问题,但直到最近,意大利的区域当局才通过控制和缓解这一现象来管制这一领域。电子鼻最初是作为廉价、容易检测挥发物的工具开发的,在空气的化学分析方面,可能以廉价且可行的方式具有所需的时间分辨的气味排放现象的覆盖范围。一个需要解决的关键问题是评估传感器阵列在野外和工作条件下的识别能力。本文将动态嗅觉测量和气相色谱-质谱/嗅觉测量相结合,研究了不同技术的电子鼻对垃圾处理厂臭气排放的响应,以实现对环境的监测。建立和改进清洁生产技术。在垃圾处理厂检测到三种影响最大的恶臭源:沼气,一种城市固体废物机械处理的副产品,有机物含量低,污泥经过压缩和脱水处理城市污水。臭气影响最主要的来源是污泥,臭气影响的主要原因是芳烃(特别是1,3,5-三甲基苯)、脂肪族烃、萜烯和硫挥发物(甲基二硫化物、二硫化碳、二甲基三硫化物)。在两个电子鼻中测试了10个金属氧化物半导体和32个聚合物/黑碳(纳米复合阵列)传感器的识别源能力。线性判别分析和交叉验证的结果显示,86.7%的金属氧化物半导体识别成功,53.3%的纳米复合阵列识别成功,93.3%的传感器属于根据气味活性分子的选择性选择的两种技术。遏制也可以通过喷洒特定的产品和使用阵列中选定的传感器监测过程来实现气味。现场工作的结果显示了电子鼻阵列中不同施工技术的优缺点,以描述和监测废物管理工厂的现场和实时臭气排放。


相关文章