导 读 |
挥发性有机化合物(VOC)是人体代谢(正常和疾病相关)的最终产物,主要通过呼吸、尿液和粪便排出。因此,VOC作为疾病的标志物非常有用,对临床医生也很有帮助,因为它的取样无创,廉价,无痛。电子鼻(enose)为分析气体样品提供了一种简单而廉价的方法。因此,该装置可根据特定的呼吸图谱(呼吸剖面)用于诊断、监测或表型疾病。
eNose作为一种无创性工具在临床诊断中的应用价值... 标签: Cyranose 320、便携式电子鼻,文献、呼吸研究 |
挥发性有机化合物(VOC)是人体代谢(正常和疾病相关)的最终产物,主要通过呼吸、尿液和粪便排出。因此,VOC作为疾病的标志物非常有用,对临床医生也很有帮助,因为它的取样无创,廉价,无痛。电子鼻(enose)为分析气体样品提供了一种简单而廉价的方法。因此,该装置可根据特定的呼吸图谱(呼吸剖面)用于诊断、监测或表型疾病。
eNose作为一种无创性工具在临床诊断中的应用价值。
在PubMed和Cochrane图书馆中进行面向PRISMA的检索。仅包括2000年以来发表的人类研究。结果:共有48篇原始文章、21篇综述和7篇其他文献符合要求并进行了全面分析。所选研究的质量评估是根据诊断准确性报告标准进行的。研究最多的是气道阻塞性疾病,使用最多的是Cyranose 320。
结论:我们进行了多个病例对照研究,以在不同领域测试这项技术。超过一半的研究显示了良好的准确性。然而,在取样方法、分析、再现性和外部验证方面存在一些需要标准化的限制。此外,迫切需要在打算治疗人群中测试这项技术。因此,在临床环境中考虑enose对VOC分析的贡献是有效的
Cyranose 320 便携式电子鼻2019-2020上半年出版文献情况,90%是医学疾病相关,包括呼吸疾病、儿科临床医学、糖尿病、胰腺癌、肺炎、COPD、哮喘、肠道疾病等。临床无创诊断研究呈飞速上升趋势。
Cyranose 320便携式电子鼻出版文献集部分汇总(2019-2020上) |
||||||
No |
Title of Aticle |
Journal |
Vol |
Pages |
Year |
Authors |
1 |
The Assessment of Fecal Volatile Organic Compounds in Healthy Infants: Electronic Nose Device Predicts Patient Demographics and Microbial Enterotype |
Surgical Research |
254 |
340-347 |
2020 |
Brian D. Hosfield MD, MS et al |
2 |
Electronic nose: a pilot study to discriminate of children with uncontrolled asthma |
Breath Research |
14 |
4 |
2020 |
Laura Tenero et al |
3 |
Electronic nose in discrimination of children with uncontrolled asthma |
J Breath Res. |
|
|
2020 |
Laura Tenero et al |
4 |
Fecal Volatile Organic Compound Profiles are Not Influenced by Gestational Age and Mode of Delivery: A Longitudinal Multicenter Cohort Study |
Biosensors |
- |
- |
2020 |
N Deianova et al |
5 |
Smell—Adding a New Dimension to Urinalysis |
Biosensors |
|
|
2020 |
EH Visser et al |
6 |
Identification of breath-prints for the COPD detection associated with smoking and household air pollution by electronic nose |
Respiratory Medicine |
163 |
- |
2020 |
Maribel Rodríguez-Aguilar et al |
7 |
Human volatilome analysis using eNose to assess uncontrolled asthma in a clinical setting |
Allergy |
75 |
1630-1639 |
2020 |
Mariana farraia et al |
8 |
Early detection and follow‐up of colorectal neoplasia based on faecal volatile organic compounds |
Colorectal Disease |
- |
- |
2020 |
S Bosch et al |
9 |
Volatile Organic Compound breath testing detects in-situ Squamous cell carcinoma of bronchial and laryngeal regions and shows distinct profiles of each tumour. |
Breath Research |
- |
- |
2020 |
D Fielding et al |
10 |
Identification of profiles of volatile organic compounds in exhaled breath by means of an electronic nose as a proposal for a screening method for breast cancer: a case-control study |
Breath Research |
- |
- |
2020 |
Miss Lorena Díaz de León-Martínez et al |
11 |
Exhaled Volatile Organic Compounds analysis by e-nose can detect Idiopathic Pulmonary Fibrosis |
Breath Research |
- |
- |
2020 |
S Dragonieri et al |
12 |
Assessment of the Portable C-320 Electronic Nose for Discrimination of Nine Insectivorous Bat Species: Implications for Monitoring White-Nose Syndrome |
Biosensors |
- |
- |
2020 |
AC Doty et al |
13 |
Electronic Nose as a Novel Method for Diagnosing Cancer: A Systematic Review |
Biosensors |
- |
- |
2020 |
C Baldini et al |
14 |
Nanosensors for early detection of plant diseases |
Nanomaterials |
- |
- |
2020 |
NA Yusof et al |
15 |
Breath-based non-invasive diagnosis of Alzheimer's disease: A pilot study |
Breath Research |
- |
- |
2020 |
A Tiele et al |
16 |
Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: solutions to improve the application of machine learning in respiratory research |
- |
- |
- |
2020 |
Chung-Yu Chen et al |
17 |
Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS |
Sensors and Actuators B:-Chemical |
311 |
- |
2020 |
T Saidi et al |
18 |
Analysemetoder til måling af flere uønskede stoffer og mikroorganismer i samme prøve |
teknologisk |
- |
- |
2020 |
SL Jørgensen et al |
19 |
Development of an E-nose system using machine learning methods to predict ventilator-associated pneumonia |
Microsystem |
- |
- |
2020 |
YH Liao et al |
20 |
Exhaled Breath Analysis in Diagnosis of Malignant Pleural Mesothelioma: Systematic Review |
J. Environ. Res. Public Health |
- |
- |
2020 |
ZN Töreyin et al |
21 |
Development of a Compact, IoT-Enabled Electronic Nose for Breath Analysis |
Electronics |
- |
- |
2020 |
A Tiele et al |
22 |
Microbiota-derived metabolites as diagnostic markers for respiratory fungal infections |
Pharmaceutical |
- |
- |
|
A Hérivaux et al |
23 |
Adsorbent-SERS Technique for Determination of Plant VOCs from Live Cotton Plants and Dried Teas |
ACS Omega |
- |
2779–2790 |
2020 |
J Park et al |
24 |
Electronic Nose: Current Status and Future Trends |
Surface and Interface |
- |
- |
2020 |
A Staerz et al |
25 |
Sniffing Out Urinary Tract Infection—Diagnosis Based on Volatile Organic Compounds and Smell Profile |
Biosensors |
- |
- |
2020 |
VM Dospinescu et al |
26 |
Polyetherimide/carbon black composite sensors demonstrate selective detection of medium-chain aldehydes including nonanal |
Chemical Engineering |
- |
- |
2020 |
A Daneshkhah et al |
27 |
Smart and Intelligent E‐nose for Sensitive and Selective Chemical Sensing Applications |
Smart Sensors Environmental Medical |
- |
- |
2020 |
S Dhanekar et al |
28 |
Detection of microorganisms onboard the international space station using an electronic nose |
Gravitational Space Research |
- |
2332-7774 |
2020 |
U Reidt et al |
29 |
Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters |
ERJ |
- |
- |
2020 |
S Kort et al |
30 |
Applications of an electronic nose in the prediction of oxidative stability of stored biodiesel derived from soybean and waste cooking oil |
Fuel |
- |
- |
2020 |
IG Vidigal et al |
31 |
Electronic Nose and Its Applications: A Survey |
Automation Computing |
- |
- |
2020 |
D Karakaya et al |
32 |
Improving lung cancer diagnosis by combining exhaled-breath data and clinical parameters |
ERJ |
- |
- |
2020 |
S Kort et al |
33 |
Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: a review |
Food Science |
- |
- |
2020 |
E Bonah t al |
34 |
Nanobiosensor: Current Trends and Applications |
NanoBioMedicine |
- |
- |
2020 |
N Debnath t al |
35 |
Volatile organic compounds associated with diagnosis and disease characteristics in asthma–A systematic review |
Respiratory Medicine |
169 |
- |
2020 |
AM Peel et al |
36 |
Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins? |
Gastrointestinal Oncology |
- |
- |
2020 |
A Loktionov et al |
37 |
Predictive monitoring in neonates |
Paediatrics Child Health |
- |
- |
2020 |
AJ Parish et al |
38 |
Volatile organic compounds: Potential biomarkers for improved diagnosis and monitoring of diabetic wounds |
Wound Healing Tissue Repair |
- |
- |
2020 |
A Daneshkhah et al |
39 |
Metabolomics, an essential tool in exploring and harnessing microbial chemical ecology |
Phytobiomes |
- |
- |
2020 |
J Kellogg et al |
40 |
Lab-Made Electronic Nose for Fast Detection of Listeria monocytogenes and Bacillus cereus |
Veterinary |
- |
- |
2020 |
PF Astantri et al |
41 |
Volatile organic compounds in breath can serve as a non‐invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer |
Alimentary |
- |
- |
2020 |
KE van Keulen et al |
42 |
Recognition of breathprints of lung cancer and chronic obstructive pulmonary disease using the Aeonose® electronic nose |
Breath Research |
- |
- |
2020 |
E Krauss et al |
43 |
An Efficient Electronic Nose System for Odour Analysis and Assessment |
opus.lib |
- |
- |
2020 |
W Zhang et al |
44 |
Methods for Early Detection of Microbiological Infestation of Buildings Based on Gas Sensor Technologies |
Chemosensors |
- |
- |
2020 |
M Garbacz et al |
45 |
Molecular materials for gas sensors and sensor arrays |
Advanced Nanomaterials |
- |
- |
2020 |
M Rodriguez-Mendez |
46 |
Technology innovation: advancing capacities for the early detection of and rapid response to invasive species |
Biological |
- |
- |
2020 |
B Martinez et al |
47 |
Feasibility and diagnostic accuracy of an electronic nose in children with asthma and cystic fibrosis |
Breath Research |
- |
- |
2019 |
MAGE Bannier et al |
48 |
The influence of lifestyle factors on fecal volatile organic compound composition as measured by an electronic nose |
Breath Research |
- |
- |
2019 |
S Bosch et al |
49 |
Exhaled breath profiling by electronic nose enabled discrimination of allergic rhinitis and extrinsic asthma |
Biomarkers |
- |
- |
2019 |
S Dragonieri et al |
50 |
An electronic nose can sniff out idiopathic pulmonary fibrosis |
Eur Respiratory Soc |
- |
- |
2019 |
S Dragonieri et al |
51 |
The electronic nose technology in clinical diagnosis: A systematic review |
Porto biomedical |
- |
- |
2019 |
MV Farraia et al |
52 |
Integration Technologies in Gas Sensor Application |
Gas Sensing |
- |
- |
2019 |
Y Deng et al |
53 |
Identification of volatile organic compounds and their concentrations using a novel method analysis of MOS sensors signal |
food science |
- |
- |
2019 |
M Gancarz et al |
54 |
Use of electronic noses for diagnosis of digestive and respiratory diseases through the breath |
Biosensors |
- |
- |
2019 |
C Sánchez et al |
55 |
Machine Learning Methods Applied to Predict Ventilator-Associated Pneumonia with Pseudomonas aeruginosa Infection via Sensor Array of Electronic Nose in Intensive Care Unit |
Sensors |
- |
- |
2019 |
YH Liao et al |
56 |
Identification of profiles of volatile organic compounds in exhaled breath by means of an electronic nose as a proposal for a screening method for breast cancer: a case-control study |
ERJ |
- |
- |
2019 |
LD de León-Martínez |
57 |
VOC pattern recognition of lung cancer: a comparative evaluation of different dog- and eNose-based strategies using different sampling materials |
Acta Oncologica |
58 |
- |
2019 |
W Biehl et al |
58 |
Fecal volatile organic compounds for early detection of colorectal cancer: where are we now? |
Cancer Research Clinical Oncology |
145 |
223–234 |
2019 |
S Bosch et al |
59 |
Breathprinting-based diagnosis: case study: respiratory diseases |
Breath analysis |
- |
- |
2019 |
J Pako et al |
60 |
A review of exhaled breath: a key role in lung cancer diagnosis |
Breath Res |
- |
- |
2019 |
D Marzorati et al |
61 |
Electronic nose: A non-invasive technology for breath analysis of diabetes and lung cancer patients |
Breath Res |
- |
- |
2019 |
B Behera et al |
62 |
Electronic nose for smart identification of roofing and paving grade asphalt |
Transportation Research Procedia |
- |
- |
2019 |
F Autelitano et al |
63 |
The potential of breath analysis to improve outcome for patients with lung cancer |
Breath Res |
- |
- |
2019 |
SX Antoniou et al |
64 |
Exhaled breath condensate volatilome allows sensitive diagnosis of persistent asthma |
Allergy |
- |
- |
2019 |
J Cavaleiro Rufo et al |
65 |
Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: solutions to improve the application of machine learning in respiratory research |
Respiratory Research |
- |
- |
2019 |
Chung-Yu Chen et al |
66 |
Assessing Waste Cooking Oils for the Production of Quality Biodiesel Using an Electronic Nose and a Stochastic Model |
ACS |
- |
- |
2019 |
AF Siqueira, et al |
67 |
Electronic noses in medical diagnostics |
Current medicinal |
- |
- |
2019 |
W Wojnowski et al |
68 |
Laser photoacoustic spectroscopy applications in breathomics |
Biomedical |
- |
- |
2019 |
YV Kistenev et al |
69 |
Nanoplasmonic discrimination of organic solvents using a bimetallic optical tongue |
Systems XI |
|
|
2019 |
JR Sperling et al |
70 |
Critical review of electronic nose and tongue instruments prospects in pharmaceutical analysis |
Analytica chimica acta |
- |
- |
2019 |
T Wasilewski et al |
71 |
Rapid detection and classification of citrus fruits infestation by Bactrocera dorsalis (Hendel) based on electronic nose |
Postharvest Biology |
- |
- |
2019 |
T Wen et al |
72 |
Optical sensory arrays for the detection of urinary bladder cancer‐related volatile organic compounds |
Biophotonics |
12 |
10 |
2019 |
Simian Zhu et al |
73 |
Prevention and early detection for NSCLC: Advances in thoracic oncology 2018 |
Thoracic Oncology |
14 |
1513-1527 |
2019 |
H Balata et al |
74 |
Breathprinting based diagnosis, selected case study: U-BIOPRED project |
Breath analysis |
- |
33-48 |
2019 |
P Brinkman et al |
75 |
Identification and prospective stability of electronic nose (eNose)–derived inflammatory phenotypes in patients with severe asthma |
Allergy |
- |
- |
2019 |
P Brinkman et al |
76 |
Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer |
Breath Res |
- |
- |
2019 |
A Kononov et al |
77 |
Recognition and sensing of organic compounds using analytical methods, chemical sensors, and pattern recognition approaches |
Chemometrics and Intelligent |
- |
- |
2019 |
SK Jha et al |
78 |
Research progress and prospect on non-destructive detection and quality grading technology of apple |
Smart Agriculture |
- |
- |
2019 |
Y Cao et al |
79 |
Ethanol standard in halal dietary product among Southeast Asian halal governing bodies |
Food Science |
- |
- |
2019 |
N Pauzi et al |
80 |
e-Nose Technology: The State of the Art on Lung Cancer Diagnosis |
Breath Analysis |
- |
- |
2019 |
PF Crucitti et al |
81 |
Methods of Classification of the Genera and Species of Bacteria Using Decision Tree |
Telecommunications Information |
- |
- |
2019 |
A Plichta et al |
82 |
Polyetherimide/carbon black composite sensors demonstrate selective detection of medium-chain aldehydes including nonanal |
Chemical Engineering |
- |
- |
2019 |
A Daneshkhah et al |
83 |
A Mini Review of Trends towards Automated and Non-Invasive Techniques for Early Detection of Lung Cancer: From Radiomics through Proteogenomics to Breathomics |
PhCS |
- |
- |
2019 |
Moninuola et al |
84 |
Breath Analysis: A Systematic Review of Volatile Organic Compounds (VOCs) in Diagnostic and Therapeutic Management of Pleural Mesothelioma |
Cancers |
- |
- |
2019 |
A Catino et al |
85 |
Volatile organic compounds as biomarkers of gastrointestinal diseases and nutritional status |
Analytical |
- |
- |
2019 |
M Rondanelli et al |
86 |
The role of measuring exhaled breath biomarkers in sarcoidosis: a systematic review |
Breath Res |
- |
- |
2019 |
DL Terrington et al |
87 |
Advances in semiconducting nanowires for gas sensing: synthesis, device testing, integration and electronic nose fabrication |
iposit.ub.edu |
- |
- |
2019 |
G Domènech Gil et al |
88 |
The “-Omics” of the New Bronchopulmonary Dysplasia |
Newborn Lung |
- |
- |
2019 |
CV Lal et al |
89 |
A novel data pre-processing method for odour detection and identification system |
Sensors and Actuators |
- |
- |
2019 |
W Zhang et al |
90 |
A CMOS compatible miniature gas sensing system |
Gas, and Biosensors |
- |
- |
2019 |
TI Chou et al |
91 |
Biosensors for detection of food borne pathogens |
thepharmajourna |
- |
- |
2019 |
U Choudhary et al |
92 |
苹果无损检测和品质分级技术研究进展及展望 |
智慧农业 |
- |
- |
2019 |
曹玉栋等 |
93 |
Advances in electronic nose development for application to agricultural products |
Food Analytical Methods |
- |
- |
2019 |
W Jia et al |
94 |
Lab-Made Electronic Nose for Fast Detection of Listeria monocytogenes and Bacillus cereus |
Veterinary |
- |
- |
2019 |
PF Astantri et al |
95 |
Wir riechen im Hier und Jetzt |
Entdecke das Riechen wieder |
- |
- |
2019 |
A Keller et al |
96 |
Medical diagnosis by breath analysis: odor sensors |
Medicine sciences |
- |
- |
2019 |
E Pajot et al |
97 |
L'haleine et les capteurs d'odeurs-Nouveaux outils de diagnostic médical |
Medicine sciences |
- |
- |
2019 |
É Pajot-Augy et al |
98 |
Computational Optimization of Metal-Organic Framework (MOF) Arrays for Chemical Sensing |
d-scholarship.pitt.edu |
- |
- |
2019 |
J Gustafson et al |
99 |
Development of a device for the automatic sampling and separation of exhaled breath in electronic nose systems |
politesi.polimi.it |
- |
- |
2019 |
F De GRAZIA et al |
100 |
Local warning integrated with global feature based on dynamic spectra for FAIMS data analysis in detection of clinical wound infection |
Sensors and Actuators |
- |
- |
2019 |
T Sun et al |
101 |
Sensors for detecting pulmonary diseases from exhaled breath |
ERJ |
- |
- |
2019 |
D Hashoul et al |
102 |
呼出气挥发性有机物传感器在疾病诊断中的研究进展 |
中国公共卫生 |
- |
- |
2019 |
范蕴非等 |
103 |
Application of Electronic Nose and Tongue for Beverage Quality Evaluation |
Engineering Tools |
- |
- |
2019 |
RB Roy et al |
104 |
On-Line Analysis of Exhaled Breath: Focus Review |
Chemical ACS |
- |
- |
2019 |
T Bruderer et al |
105 |
Hybrid Analytical Platform Based on Field-Asymmetric Ion Mobility Spectrometry, Infrared Sensing, and Luminescence-Based Oxygen Sensing for Exhaled Breath Analysis |
Sensors |
- |
- |
2019 |
LT Hagemann et al |
106 |
Exhaled breath testing–A tool for the clinician and researcher |
Paediatric respiratory |
- |
- |
2019 |
MD Davis et al |
107 |
Analyse de l'air exhalé par des matrices de capteurs nanocomposites: le nez électronique pour l'aide au diagnostic. Application aux insuffisances rénales |
tel.archives |
- |
- |
2019 |
P Le Maout et al |
108 |
Az intrathoracalis légutak szerepe az Obstruktív alvási apnoe patomechanizmusában |
repo.lib.semmelweis |
- |
- |
2019 |
L Kunos et al |
109 |
An investigation of volatile metabolite profiling methods for phenotyping respiratory disease |
search.proquest |
- |
- |
2019 |
W Ahmed et al |
110 |
Technology innovation: advancing capacities for the early detection of and rapid response to invasive species |
Biological |
- |
- |
2019 |
B Martinez et al |