tlyonlogo
会员中心
您好,请登录, 注册

最近浏览的商品:

0去询价篮结算
询价篮中还没有商品,赶紧选购吧!
当前位置: 首页 > 实验方法 > 果蔬采后 > 有机苹果系统采前和采后病害管理
文章分类
相关产品
浏览历史

有机苹果系统采前和采后病害管理


来源: Achour Amiri WSU  发布日期: 2021-02-23  访问量: 378


评估使用动态气调(DCA)、GRAS产品和生物控制剂控制贮藏中腐烂的益处...
标签: 动态气调、苹果、呼吸代谢、SafePod
 

Pre- and postharvest disease management in organic apple systems

有机苹果系统采前和采后病害管理
PI: Achour Amiri      Co-PI (2): Yanmin Zhu
Organization: Washington State University    Organization: USDA-ARS
Telephone: 509-293-8752        Telephone: 509-664-2280 ext. 215
Email: a.amiri@wsu.edu       Email: yanmin.zhu@ars.usda.gov
Address: 1100 N. Western Ave. Address: 1104 N. Western Ave.
City/State/Zip: Wenatchee,WA,98801   City/State/Zip: Wenatchee,WA,98801
Cooperators: Dr. Wojciech Janisiewicz (USDA-ARS, Kearneysville); Certis, Sym-Agro, Marrone Bio, Wilbur-Ellis, Several growers and packers in Washington State.

OBJECTIVES
1- Evaluate the adequacy and efficacy of current and novel preharvest management organic strategies.
2- Evaluate the benefits of using dynamic control atmosphere (DCA), GRAS products and biocontrol agents to control rots in storage.
3- Acquire novel knowledge about the impact of different spray regimes and storage conditions on fruit microbiomes pre- and postharvest to enhance management in the future.

1-评估当前和新的采前管理有机策略的充分性和有效性。
2-评估使用动态气调(DCA)、GRAS产品和生物控制剂控制贮藏中腐烂的益处。
3-获得关于不同喷雾制度和贮藏条件对水果采前和采后微生物群落影响的新知识,以加强未来的管理。


SIGNIFICANT FINDINGS:
- The efficacy of 7 organic preharvest materials has been tested in 2019 and four to five of them show very good efficacy. In 2020, 15 materials have bee tested preharvest. Results will be available in 2021.
- The efficacy of these products was confirmed using artificial inoculations (Activity 1.2).
- Four most effective materials from 2019 trials were selected and tested in 2020 to develop a seasonal spray program (Activity 1.3) to enhance decay management.
- DCA and static CA (Activity 2.1) showed variability in reducing the incidence and severity of blue mold, gray mold, Mucor rot, Speck rot, and bull’s eye rot. Trial are be redone in 2020 to fine-tune the DCA components (O2 and CO2 concentrations)
- Some of the preliminary data have been provided to the stakeholders via meetings in 2020.

-2019年对7种有机采前材料的功效进行了测试,其中4至5种表现出非常好的功效。2020年,有15种材料进行了采前测试。结果将于2021年公布。
-这些产品的功效通过人工接种得到证实(活性1.2)。
-从2019年试验中选择了四种最有效的材料,并在2020年进行了测试,以制定季节性喷洒计划(活动1.3),以加强腐烂管理。
-DCA和静态CA(活动2.1)在降低蓝霉菌、灰霉菌、毛霉腐病、斑点腐病和牛眼腐病的发病率和严重程度方面表现出可变性。将于2020年重新进行试验,以微调DCA成分(O2和CO2浓度)
-一些初步数据已通过2020年的会议提供给利益相关者


METHODS
OBJECTIVE 1. Evaluate the adequacy and efficacy of current and novel preharvest management organic strategies (Year 1-3)
Activity 1.3: Develop effective spray programs based on optimal timing and number of applications of combined treatments: Based on the efficacy of different treatments from trials conducted as outlined in activities 1 and 2, the best treatments at bloom and preharvest will be combined for up to 5 applications from bloom to harvest. Aggressive (up to 5 applications/season) and conservative (1-2 applications/season) spray programs will be designed and tested for two successive seasons as described in Activities 1 & 2 above. Adjustments, in timing and numbers of sprays, may be made after Year 2 to enhance efficacy in Year 3.

目标1。评估当前和新的采前管理有机策略的充分性和有效性(第1-3年)
活动1.3:根据组合处理的最佳时间和施用次数制定有效的喷施方案:根据活动1和2所述试验中不同处理的效果,从开花到收获,花期和采前的最佳处理组合最多5次。如上述活动1和2所述,将为连续两个季节设计和测试激进(最多5次/季)和保守(1-2次/季)喷雾程序。在第二年之后,可以调整喷雾剂的时间和数量,以提高第三年的疗效。

OBJECTIVE 2. Evaluate the benefits of using dynamic control atmosphere (DCA), GRAS products and biocontrol agents to control rots in storage. (Year 1-3)
The work planned in Objective 2 will focus on enhancing the level of decay control during storage. Herein, we will focus on the effect of Dynamic Controlled Atmosphere in lowering the risks of decay development compared to regular CA or RA atmospheres. We will also evaluate the efficacy of some GRAS and biocontrol products.

目标2。评估使用动态气调(DCA)、GRAS产品和生防菌剂控制储存腐烂的益处。(1-3年)
目标2中计划的工作将侧重于提高储存期间的衰变控制水平。在此,我们将重点讨论动态气调与常规CA或RA大气相比在降低衰变发展风险方面的作用。我们还将评估一些GRAS和生防产品的疗效。


Activity 2.1. Efficacy of Dynamic Controlled Atmosphere. While many benefits of DCA systems on the fruit quality and reduction of physiological disorders have been evidenced, the impact on disease reduction in such storage conditions is still unknown. The ability of fungi to survive in hypoxia varies but their metabolism is tremendously diminished. The DCA systems (O2 <1 to 0.3%) will only be relevant to pome fruit packers if a significant reduction in decay rate compared to static controlled atmosphere (1.5 to 3% oxygen) is shown.

活动2.1。动态气调的功效。虽然DCA系统对水果品质和减少生理失调的许多益处已经被证明,但是在这种贮藏条件下对减少病害的影响仍然是未知的。真菌在缺氧条件下的生存能力各不相同,但其代谢能力却大大降低。如果与静态气调(1.5%-3%的氧气)相比,衰减率显著降低,则DCA系统(O2<1%-0.3%)仅适用于柚子包装机。


     In Year 1 and 2, we will focus on 4 key postharvest pathogens, i.e. Botrytis cinerea, Neofabraea perennans, Penicillium expansum and Mucor piriformis. For the two first pathogens, Fuji apples will be inoculated with spore suspensions at 500,000 spores/ml on the trees 15 days prior to harvest to mimic pre-harvest conditions. For P. expansum and M. piriformis, fruit picked at commercial maturity, will be surface-disinfected in sodium hypochlorite, rinsed with sterile water, and inoculated with spore suspensions of each pathogen at 500,000 spores/ml. Fruit inoculated with each pathogen will be stored accordingly as shown in Table 2. Four replicates of 25 fruit each (total of 100 fruit/treatment) previously randomized using an RCB design will be used. Decay incidence and severity will be determined after 2, 4 and 6 months of storage. Additionally, 40 non-inoculated fruit (4 replicates of 10 fruit each), picked at commercial maturity, will be stored in the same atmospheres for the same storage periods and will be used to asses fruit quality parameters (firmness, solid content, sugar content, acidity). Fruit will be stored at Stemilt RCA rooms for regular (RA) and controlled (CA) atmosphere treatments and in Safepod or Harvestwatch containers for the DCA treatment.

在第1年和第2年,我们将重点研究4种主要的采后病原菌,即灰霉病菌、多年生新法氏菌、扩展青霉和梨状毛霉。对于最初的两种病原菌,富士苹果将在收获前15天在树上接种50万个孢子/毫升的孢子悬浮液,以模拟收获前的条件。对于商业成熟期采摘的梨状支原体和扩展支原体,将用次氯酸钠进行表面消毒,用无菌水冲洗,并以500000个孢子/ml接种每个病原菌的孢子悬浮液。接种每个病原菌的水果将按表2所示进行相应的储存。将使用先前使用RCB设计随机化的四个重复,每个重复25个水果(总共100个水果/治疗)。腐烂发生率和严重程度将在储存2、4和6个月后确定。此外,在商业成熟期采摘的40个未接种的水果(4个副本,每个副本10个水果)将在相同的大气中储存相同的储存期,并将用于评估水果质量参数(硬度、固形物含量、含糖量、酸度)。水果将储存在Stemilt RCA室进行常规(RA)和受控(CA)大气处理,并储存在Safepod或Harvestwatch容器中进行DCA处理。


     In Year 2 and 3, we will assess the efficacy of RA, CA and DCA for the control of natural infections on Fuji apples harvested at commercial maturity for the experimental block at Sunrise orchard and will be stored as in the three different atmospheres. A total of 400 fruit will be used for each atmosphere and fruit will be stored as explained in the previous section. Disease incidence will be recorded after 3 and 6 months of storage or beyond if disease rate is low.

在第2年和第3年,我们将评估RA、CA和DCA对在商业成熟期为日出果园试验区收获的富士苹果自然感染的控制效果,并将其储存在三种不同的大气中。每层大气总共使用400个水果,水果将按照上一节的说明进行储存。储存3个月和6个月后,如果发病率较低,则记录发病率。

Table 2. Suggested number of fruits, atmosphere types, and storage duration to test on four pome fruit pathogens


相关文章