tlyonlogo
会员中心
您好,请登录, 注册

最近浏览的商品:

0去询价篮结算
询价篮中还没有商品,赶紧选购吧!
当前位置: 首页 > 实验技术 > 果蔬采后 > 量化苹果多样性:加拿大苹果生物多样性贮藏的表型特征
文章分类
相关产品
浏览历史

量化苹果多样性:加拿大苹果生物多样性贮藏的表型特征


来源: Sophie Watts et al  发布日期: 2021-07-20  访问量: 18


一个具有安全保障的食品供应的未来需要人类保护和利用农业植物物种之间的巨大变化。苹果是最广泛消费的水果之一,在全世界范围内提供了重要的营养价值。在这里,我们描述了一个多样化的苹果集合中的关键农业性状,为未来的苹果改良提供了基础。我们表明,商业上成功的苹果品种只抓住了苹果多样性的一小部分,并证明通过利用现有的遗传多样性可以实现重大的改进。...
标签: 苹果,采后,表型,pimprenelle,生物多样性
 

Quantifying apple diversity: A phenomic characterization of Canada’s Apple Biodiversity Collection

量化苹果多样性:加拿大苹果生物多样性贮藏的表型特征
Sophie Watts, Zoë Migicovsky, Kendra A. McClure, Cindy H. J. Yu, Beatrice Amyotte, Thomas Baker, David Bowlby, Karen Burgher-MacLellan, Laura Butler, Richard Donald, Lihua Fan, Sherry Fillmore, John Flewelling, Kyle Gardner, Mark Hodges, Tim Hughes, Vinetha Jagadeesan, Naomi Lewis, Edward MacDonell, Laura MacVicar, Michel McElroy, Daniel Money, Matthew O’Hara, Quang Ong, Leslie Campbell Palmer, Jason Sawler, Melinda Vinqvist-Tymchuk, HP Vasantha Rupasinghe, John M. DeLong, Charles F. Forney, Jun Song, Sean Myles
First published: 23 June 2021 https://doi.org/10.1002/ppp3.10211

Societal Impact Statement

A future with a secure and safe food supply requires humanity to preserve and exploit the vast variation available across agricultural plant species. Apples are one of the most widely consumed fruits and provide significant nutritional value worldwide. Here, we characterize key agricultural traits in a diverse collection of apples to provide a foundation for future apple improvement. We show that commercially successful apple varieties capture only a small fraction of apple diversity, and demonstrate that significant improvement is possible by tapping into existing genetic diversity.

一个具有安全保障的食品供应的未来需要人类保护和利用农业植物物种之间的巨大变化。苹果是最广泛消费的水果之一,在全世界范围内提供了重要的营养价值。在这里,我们描述了一个多样化的苹果集合中的关键农业性状,为未来的苹果改良提供了基础。我们表明,商业上成功的苹果品种只抓住了苹果多样性的一小部分,并证明通过利用现有的遗传多样性可以实现重大的改进。

Summary

  • Here we present a comprehensive evaluation of apple diversity through phenotyping of Canada's Apple Biodiversity Collection (ABC) which contains over 1000 apple accessions. 在这里,我们提出了一个综合评价苹果多样性通过表型加拿大的苹果生物多样性收集(ABC),其中包含超过1000个苹果种质。
  • We assessed, over a 4-year period, more than 20,000 individual apples and quantified variation across 39 phenotypes, including phenology and fruit quality both at harvest and after 3 months of cold storage.在4年的时间里,我们评估了20000多个苹果个体,并对39个表型的变异进行了量化,包括收获期和冷藏3个月后的物候和果实品质。
  • We observe that apples in the ABC display a wide range of phenotypic variation that may prove useful for future apple improvement. For example, apples can differ by nearly 61-fold in weight, 18-fold in acidity, and 100-fold in phenolic content. We quantified the dramatic changes to apple physiology that occur during 3 months of cold storage: on average, apples lost 39% of their firmness, 31% of their acidity, and 9% of their weight, but gained 7% in soluble solids. Harvest date, flowering date, and time to ripen were all positively correlated with firmness, which suggests that the developmental pathways that drive phenological events throughout the growing season may play a role in determining an apple's texture. Finally, we show that apple breeding has selected for a significant decline in phenolic content over the past 200 years: apple cultivars released after 1940 had a 30% lower median phenolic content than cultivars released before 1940.我们观察到ABC中的苹果表现出广泛的表型变异,这可能对未来的苹果改良有用。例如,苹果的重量相差近61倍,酸度相差18倍,酚含量相差100倍。我们量化了苹果在冷藏3  个月期间发生的显著生理变化:平均而言,苹果的硬度下降了39%,酸度下降了31%,重量下降了9%,但可溶性固形物增加了7%。收获日期、开花日期和成熟时间都与硬度呈正相关,这表明在整个生长季节中驱动物候事件的发育途径可能在决定苹果质地方面发挥作用。最后,我们表明,在过去的200年中,苹果育种选择了酚含量显著下降的品种:1940年以后发行的苹果品种的酚含量中位数比1940年以前发行的品种低30%。
  • The data and analyses presented here not only provide a comprehensive quantification of the range across, and relationships among diverse apple phenotypes, but they also enable genetic mapping studies that will provide the foundation for future apple improvement via genomics-assisted breeding. 这里提供的数据和分析不仅提供了一个综合量化的范围,以及不同的苹果表型之间的关系,但它们也使遗传图谱的研究,将提供基础,为未来的苹果通过基因组学辅助育种的改进。

2.4 Fruit quality

The fruit quality traits measured included weight (g), firmness (kg/cm2), acidity (g/L malic acid), soluble solids content (SSC) (°Brix), and juiciness ((weight of juice/total fruit weight) × 100). In 2017, measurements were taken from 5 apples, while a sample of 10 apples was used in 2016 whenever possible and a mean measurement for each tree was calculated. Measurements were not recorded for trees with fewer than three representative apples available for assessment. In 2016, an automated phenotyping machine was used (the Pimprenelle, Setop Giraud Technologie, France) to collect fruit quality data. In 2017, measurements were collected manually as described below. Since the measuring techniques differed slightly between 2016 and 2017, we assessed the correlation between years for each trait (Figure S2).

测定的果实品质性状包括重量(g)、硬度(kg/cm2)、酸度(g/L苹果酸)、可溶性固形物含量(SSC)(°Brix)和多汁性(汁重/总果重)×100)。2017年,对5个苹果进行了测量,而2016年尽可能使用了10个苹果的样本,并计算了每棵树的平均测量值。对于可供评估的代表性苹果少于三个的树木,没有记录测量结果。2016年,使用了自动表型机器(Pimprenelle,Setop Giraud Technologie,法国)收集水果品质数据。2017年,如下文所述,手动收集测量数据。由于测量技术在2016年和2017年之间略有不同,我们评估了每个特征的年份之间的相关性(图S2)。


相关文章