©2012-2025 图拉扬科技 版权所有,并保留所有权利,未经授权 不得复制或建立镜像. 蜀ICP备2021003222号-1
客服热线: 400-028-9008
E-mail: contact@tlyon.com
20181112000193
导 读 |
在这项工作中,我们提出了一种使用离子迁移谱(IMS)技术和人工智能方法对不同生产商的圆珠笔油墨进行检测和分类的新方法。IMS 能够快速、灵敏、现场收集光谱数据,这些数据可以使用机器学习方法立即进行分析。在这项研究中,使用高级IMS(AIMS)仪器收集墨水数据,并应用了几个机器学习分类器(包括额外树、梯度增强、随机森林和支持向量分类器) 标签: 人工智能、分类、取证、墨水、离子迁移谱仪、机器学习 |
Fast Detection and Classification of Ink by Ion Mobility Spectrometry and Artificial Intelligence
MATEJ PETRÍK1, (Member, IEEE), Emanuel Mataš2, Martin Sabo1,3, Michal Ries1,Štefan Matejčík2,
1Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, Bratislava, 842 16, Slovakia
2Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, 842 48, Slovakia
3MaSaTECH Ltd., Bratislava, 842 16, Slovakia
This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 883116. This article was written thanks to the generous support under the Operational Program Integrated Infrastructure for the project:
"Support of research activities of Excellence laboratories STU in Bratislava ", Project no. 313021BXZ1, co-financed by the European
Regional Development Fund." The authors declare partial support by Slovak Research and Development Agency under the project No.
APVV-19-0386 and No. APVV-22-0133.
该技术实现了95.23%的分类准确率,不仅展示了最先进的性能,还为法医调查的进步铺平了道路。除了墨水分类,估计样本创建时间的能力进一步突显了其有助于解决复杂法医案件的潜力。这种准确性、便携性和非破坏性的结合使IMS成为法医学中的变革性工具。
*本文内容非商业广告,仅供专业人士参考!
©2012-2025 图拉扬科技 版权所有,并保留所有权利,未经授权 不得复制或建立镜像. 蜀ICP备2021003222号-1
客服热线: 400-028-9008
E-mail: contact@tlyon.com
20181112000193