©2012-2025 图拉扬科技 版权所有,并保留所有权利,未经授权 不得复制或建立镜像. 蜀ICP备2021003222号-1
客服热线: 400-028-9008
E-mail: contact@tlyon.com
20181112000193
导 读 |
通过使用基因组预测模型来预测育种材料的性能,可以改进苹果育种方案。这些模型的预测能力取决于性状遗传结构、训练集大小、所选材料与训练集的相关性以及使用的验证方法等因素。RADseq等替代基因分型方法和近红外光谱的补充数据可以帮助提高基因组预测的成本效益 标签: 基因组选择,表型选择,苹果×家苹果,数量性状,苹果REFPOP |
Evaluation of genomic and phenomic prediction for application in apple breeding
Michaela Jung1,2*, Marius Hodel1, Andrea Knauf1,2, Daniela Kupper1,2, Markus Neuditschko3,
Simone Bühlmann-Schütz1, Bruno Studer2, Andrea Patocchi1† , Giovanni AL Broggini2
Abstract:
Background:Apple breeding schemes can be improved by using genomic prediction models to forecast the performance of breeding material. The predictive ability of these models depends on factors like trait genetic architecture, training set size, relatedness of the selected material to the training set, and the validation method used. Alternative genotyping methods such as RADseq and complementary data from near-infrared spectroscopy could help improve the cost-effectiveness of genomic prediction. However, the impact of these factors and alternative approaches on predictive ability beyond experimental populations still need to be investigated. In this study, we evaluated 137 prediction scenarios varying the described factors and alternative approaches, offering
recommendations for implementing genomic selection in apple breeding.
背景:通过使用基因组预测模型来预测育种材料的性能,可以改进苹果育种方案。这些模型的预测能力取决于性状遗传结构、训练集大小、所选材料与训练集的相关性以及使用的验证方法等因素。RADseq等替代基因分型方法和近红外光谱的补充数据可以帮助提高基因组预测的成本效益。然而,这些因素和替代方法对实验人群之外的预测能力的影响仍有待研究。在这项研究中,我们评估了137种不同因素和替代方法的预测情景,提供了 苹果育种中实施基因组选择的建议。
Results: Our results show that extending the training set with germplasm related to the predicted breeding material can improve average predictive ability across eleven studied traits by up to 0.08. The study emphasizes the usefulness of leave-one-family-out cross-validation, reflecting the application of genomic prediction to a new family, although it reduced average predictive ability across traits by up to 0.24 compared to 10-fold cross-validation. Similar average predictive abilities across traits indicate that imputed RADseq data could be a suitable genotyping alternative to SNP array datasets. The best-performing scenario using near-infrared spectroscopy data for phenomic prediction showed a 0.35 decrease in average predictive ability across traits compared to conventional genomic prediction, suggesting that the tested phenomic prediction approach is impractical.
结果:我们的结果表明,用与预测育种材料相关的种质扩展训练集可以将11个研究性状的平均预测能力提高0.08。该研究强调了将一个家族排除在交叉验证之外的有用性,反映了基因组预测在新家族中的应用,尽管与10倍的交叉验证相比,它将跨性状的平均预测能力降低了0.24倍。跨性状的相似平均预测能力表明,估算的RADseq数据可能是SNP阵列数据集的合适基因分型替代品。使用近红外光谱数据进行表型预测的最佳情景显示,与传统的基因组预测相比,性状的平均预测能力下降了0.35,这表明所测试的表型预测方法不切实际。
Conclusions: Extending the training set using germplasm related with the target breeding material is crucial to improve the predictive ability of genomic prediction in apple. RADseq is a viable alternative to SNP array genotyping, while phenomic prediction is impractical. These findings offer valuable guidance for applying genomic selection in apple breeding, ultimately leading to the development of breeding material with improved quality.
结论:利用与目标育种材料相关的种质资源扩展训练集对于提高苹果基因组预测的预测能力至关重要。RADseq是SNP阵列基因分型的可行替代方案,而表型预测是不切实际的。这些发现为在苹果育种中应用基因组选择提供了有价值的指导,最终导致了质量提高的育种材料的开发。
Keywords: Genomic selection, Phenomic selection, Malus × domestica, Quantitative traits, Apple REFPOP
关键词:基因组选择,表型选择,苹果×家苹果,数量性状,苹果REFPOP
···
*本文内容非商业广告,仅供专业人士参考!
©2012-2025 图拉扬科技 版权所有,并保留所有权利,未经授权 不得复制或建立镜像. 蜀ICP备2021003222号-1
客服热线: 400-028-9008
E-mail: contact@tlyon.com
20181112000193