©2012-2025 图拉扬科技 版权所有,并保留所有权利,未经授权 不得复制或建立镜像. 蜀ICP备2021003222号-1
客服热线: 400-028-9008
E-mail: contact@tlyon.com
20181112000193
导 读 |
在现场以尽可能高的精度获得法医分析的快速分析结果对于调查至关重要。虽然便携式传感器对于犯罪现场分析至关重要,但它们在灵敏度和特异性方面往往存在局限性,特别是由于环境因素。数据融合(DF)技术可以通过组合来自多个传感器的信息来提高准确性和可靠性。本研究利用离子迁移谱(IMS)和气相色谱石英增强光声光谱(GC-QEPAS)两种传感器的数据开发了不同的DF方法,旨在提高犯罪现场操作员的安全性和现场法医分析的准确性 标签: 法医学、离子迁移谱、IMS、气相红外光谱、GC-QEPAS |
Machine Learning-Driven Data Fusion of Chromatograms, Plasmagrams, and IR Spectra of Chemical Compounds of Forensic Interest
Giorgio Felizzato,Giuliano Iacobellis,Nicola Liberatore,Sandro Mengali,Martin Sabo,Patrizia Scandurra,Roberto Viola,Francesco Saverio Romolo*
Abstract
Achieving fast analytical results on-site with the highest possible accuracy in forensic analyses is crucial for investigations. While portable sensors are essential for crime scene analysis, they often face limitations in sensitivity and specificity, especially due to environmental factors. Data fusion (DF) techniques can enhance accuracy and reliability by combining information from multiple sensors. This study develops different DF approaches using data from two sensors: ion mobility spectrometry (IMS) and gas chromatography-quartz-enhanced photoacoustic spectroscopy (GC-QEPAS), aiming to improve the safety of crime scene operators and the accuracy of on-site forensic analysis. Two DF approaches were developed for acetone and DMMP: low-level (LLDF) and mid-level (MLDF), meanwhile a high-level (HLDF) approach was applied to TATP. LLDF concatenated preprocessed data matrices, while MLDF employed principal component analysis for feature extraction. LLDF and MLDF used one-class support vector machines (OC-SVM) for classification, while HLDF combined OC-SVM for IMS and SIMCA for GC-QEPAS. Sensor location within crime scenes was established using traditional measuring tape and laser distance meters, with a 1 m cutoff distance between sensors deemed appropriate for indoor crime scenes. LLDF achieved high accuracy but was sensitive to concentration variations, while MLDF enhanced the classification robustness. HLDF allowed for independent sensor use in real scenarios. All of the methods reached 100% accuracy for DMMP and acetone, and the MLDF approach was the fastest among the DF methods, demonstrating its potential for rapid applications. DF approaches can significantly enhance the safety and accuracy of forensic investigations, with future research planned to extend data sets and include more sensors.
在现场以尽可能高的精度获得法医分析的快速分析结果对于调查至关重要。虽然便携式传感器对于犯罪现场分析至关重要,但它们在灵敏度和特异性方面往往存在局限性,特别是由于环境因素。数据融合(DF)技术可以通过组合来自多个传感器的信息来提高准确性和可靠性。本研究利用离子迁移谱(IMS)和气相色谱石英增强光声光谱(GC-QEPAS)两种传感器的数据开发了不同的DF方法,旨在提高犯罪现场操作员的安全性和现场法医分析的准确性。针对丙酮和DMMP开发了两种DF方法:低级(LLDF)和中级(MLDF),同时将高级(HLDF)方法应用于TATP。LLDF将预处理后的数据矩阵连接起来,而MLDF采用主成分分析进行特征提取。LLDF和MLDF使用单类支持向量机(OC-SVM)进行分类,而HLDF将OC-SVM用于IMS,将SIMCA用于GC-QEPAS。犯罪现场内的传感器位置是使用传统的卷尺和激光测距仪确定的,传感器之间的截止距离为1米,被认为适合室内犯罪现场。LLDF实现了高精度,但对浓度变化很敏感,而MLDF增强了分类的鲁棒性。HLDF允许在真实场景中独立使用传感器。所有方法对DMMP和丙酮的准确率均达到100%,MLDF方法在DF方法中速度最快,证明了其快速应用的潜力。DF方法可以显著提高法医调查的安全性和准确性,未来的研究计划扩展数据集并包括更多的传感器。
···
这项研究的重点不是使用大量目标分析物,而是为实际应用开发一种新的DF方法。该研究已被证明是有效的,为改善犯罪现场调查期间的安全和安保开辟了新的可能性。
*本文内容非商业广告,仅供专业人士参考!
©2012-2025 图拉扬科技 版权所有,并保留所有权利,未经授权 不得复制或建立镜像. 蜀ICP备2021003222号-1
客服热线: 400-028-9008
E-mail: contact@tlyon.com
20181112000193